George Danezis Microsoft Research, Cambridge, UK

Anonymous credentials

A critique of identity

- Identity as a proxy to check credentials
 - Username decides access in Access Control Matrix
- Sometime it leaks too much information
- Real world examples
 - Tickets allow you to use cinema / train
 - Bars require customers to be older than 18
 - But do you want the barman to know your address?

The privacy-invasive way

Usual way:

- Identity provider certifies attributes of a subject.
- Identity consumer checks those attributes
- Match credential with live person (biometric)

Examples:

- E-passport: signed attributes, with lightweight access control.
 - Attributes: nationality, names, number, pictures, ...
- Identity Cards: signatures over attributes
 - Attributes: names, date of birth, picture, address, ...

Anonymous credentials

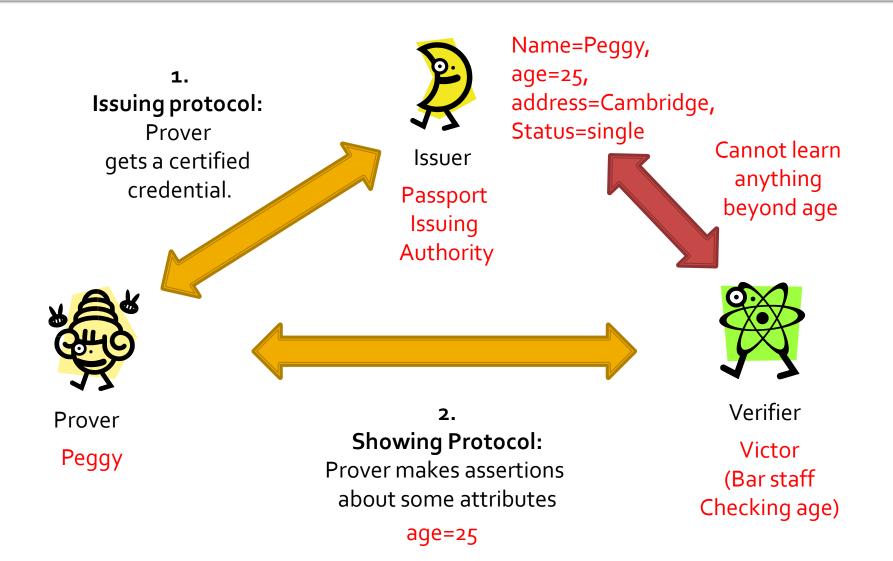
The players:

- Issuer (I) = Identity provider
- Prover (P) = subject
- Verifier (V) = identity consumer

Properties:

- The prover convinces the verifier that he holds a credential with attributes that satisfy some boolean formula:
 - Simple example "age=18 AND city=Cambridge"
- Prover cannot lie
- Verifier cannot infer anything else aside the formula
- Anonymity maintained despite collusion of V & I

The big picture



Two flavours of credentials

- Single-show credential (Brands & Chaum)
 - Blind the issuing protocol
 - Show the credential in clear
 - Multiple shows are linkable BAD
 - Protocols are simpler GOOD

We will Focus on these

- Multi-show (Camenisch & Lysyanskaya)
 - Random oracle free signatures for issuing (CL)
 - Blinded showing
 - Prover shows that they know a signature over a particular ciphertext.
 - Cannot link multiple shows of the credential
 - More complex no implementations

Technical Outline

- Cryptographic preliminaries
 - The discrete logarithm problem
 - Schnorr's Identification protocol
 - Unforgeability, simulator, Fiat-Shamir Heuristic
 - Generalization to representation
- Showing protocol
 - Linear relations of attributes
 - AND-connective
- Issuing protocol
 - Blinded issuing

Discrete logarithms (I) - revision

- Assume *p* a large prime
 - (>1024 bits—2048 bits)
 - Detail: p = qr+1 where q also large prime
 - Denote the field of integers modulo p as Z_p
- Example with p=5
 - Addition works fine: 1+2 = 3, 3+3 = 1, ...
 - Multiplication too: 2*2 = 4, 2*3 = 1, ...
 - Exponentiation is as expected: 2² = 4
- Choose g in the multiplicative group of Z_p
 - Such that g is a generator
 - Example: g=2



Discrete logarithms (II) -revision

- Exponentiation is computationally easy:
 Given g and x, easy to compute g^x
- But logarithm is computationally hard:
 Given g and g^x, difficult to find x = log_g g^x
 If p is large it is practically impossible
- Related DH problem
 - Given (g, g^x, g^y) difficult to find g^{xy}
 - Stronger assumption than DL problem

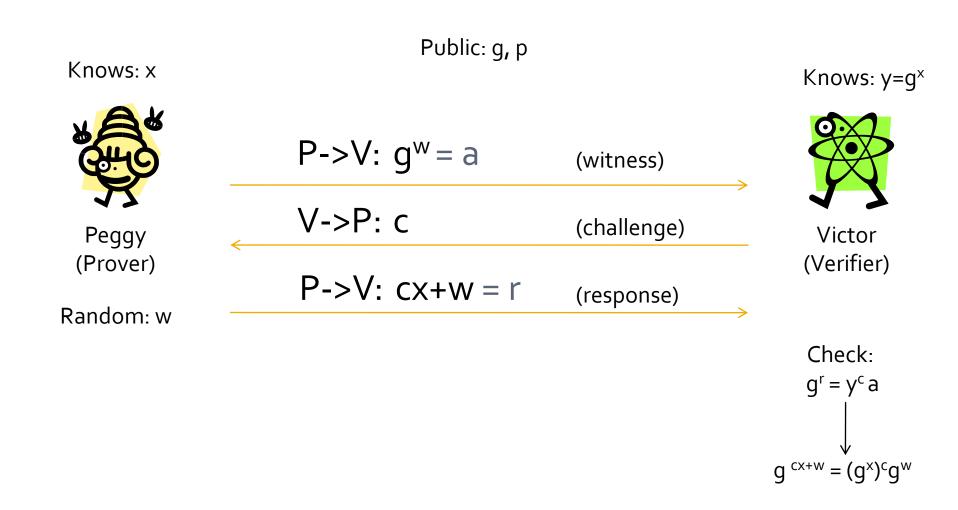
Efficient to find inverses

- Given c easy to calculate g^{-c} mod p
 - (p-1) c mod p-1
- Efficient to find roots
 - Given c easy to find g^{1/c} mod p
 - c (1/c) = 1 mod (p-1)
 - Note the case N=pq (RSA security)
- No need to be scared of this field.

Schnorr's Identification protocol

- Exemplary of the zero-knowledge protocols credentials are based on.
- Players
 - Public g a generator of Z_p
 - Prover knows x (secret key)
 - Verifier knows y = g[×] (public key)
- Aim: the prover convinces the verifier that she knows an x such that g^x = y
 - Zero-knowledge verifier does not learn x!
- Why identification?
 - Given a certificate containing y

Schnorr's protocol



No Schnorr Forgery (intuition)

- Assume that Peggy (Prover) does not know x?
 - If, for the same witness, Peggy forges two valid responses to two of Victor's challenges

$$r_1 = C_1 X + W$$
$$r_2 = C_2 X + W$$

- Then Peggy must know x
 - 2 equations, 2 unknowns (x,w) can find x

Zero-knowledge (intuition)

- The verifier learns nothing new about x.How do we go about proving this?
 - Verifier can simulate protocol executions
 - On his own!
 - Without any help from Peggy (Prover)
 - This means that the transcript gives no information about x
- How does Victor simulate a transcript?
 - (Witness, challenge, response)

Simulator

- Need to fake a transcript (g^{w'}, c', r')
 Simulator:
 - Trick: do not follow the protocol order!
 - First pick the challenge c'
 - Then pick a random response r'
 - Then note that the response must satisfy:

 $g^{r'} = (g^x)^{c'} g^{w'} \rightarrow g^{w'} = g^{r'} / (g^x)^{c'}$

- Solve for g^{w'}
- Proof technique for ZK
 - but also important in constructions (OR)

Non-interactive proof?

Schnorr's protocol

- Requires interaction between Peggy and Victor
- Victor cannot transfer proof to convince Charlie
 - (In fact we saw he can completely fake a transcript)

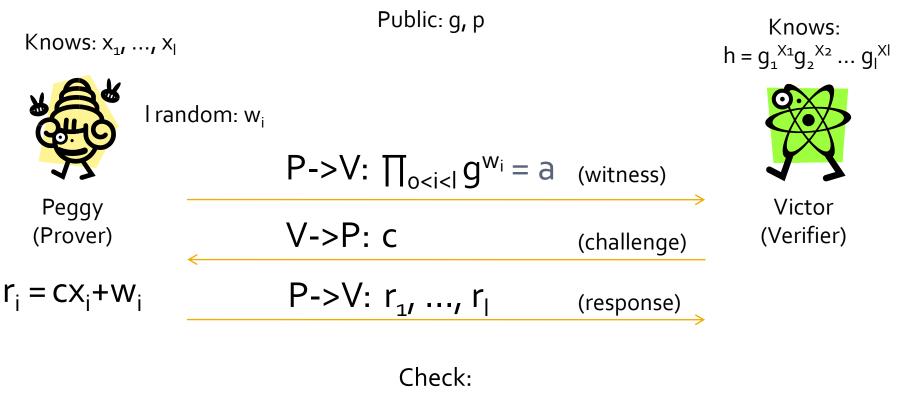
Fiat-Shamir Heuristic

- H[·] is a cryptographic hash function
- Peggy sets c = H[g^w]
- Note that the simulator cannot work any more
 - g^w has to be set first to derive c
- Signature scheme
 - Peggy sets c = H[g^w, M]

Generalise to DL represenations

- Traditional Schnorr
 - For fixed g, p and public key h = g^x
 - Peggy proves she knows x such that h = g^x
- General problem
 - Fix prime p, generators g₁, ..., g_l
 - Public key h'= $g_1^{x_1}g_2^{x_2} \dots g_l^{x_l}$
 - Peggy proves she knows $x_1, ..., x_l$ such that $h'=g_1^{x_1}g_2^{x_2}...g_l^{x_l}$

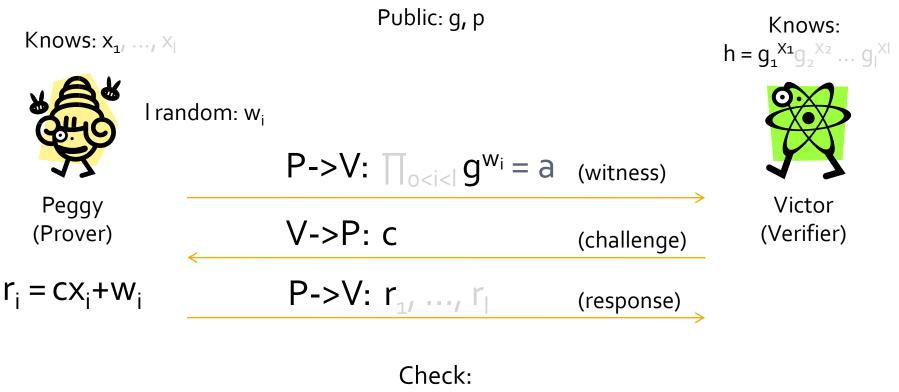
DL represenation – protocol



 $(\prod_{o < i < l} g_i^{r_i}) = h^c a$

Let's convince ourselves: $(\prod_{o < i < l} g_i^{r_i}) = (\prod_{o < i < l} g_i^{x_i})^c (\prod_{o < i < l} g^{w_i}) = h^c a$

DL represenation vs. Schnorr



 $(\prod_{o < i < l} g_i^{r_i}) = h^c a$

Lets convince ourselves: $(\prod_{0 \le i \le i} g_i^{r_i}) = (\prod_{0 \le i \le i} g_i^{x_i})^c (\prod_{0 \le i \le i} g^{w_i}) = h^c a$

Credentials – showing

- Relation to DL representation
- Credential representation:
 - Attributes x_i
 - Credential $h = g_1^{\chi_1} g_2^{\chi_2} \dots g_l^{\chi_l}$, Sig_{Issuer}(h)
- Credential showing protocol
 - Peggy gives the credential to Victor
 - Peggy proves a statement on values x_i
 - X_{age} = 28 AND x_{city} = H[Cambridge]
 - Merely DL rep. proves she knows x_i

Linear relations of attributes (1)

Remember:

- Attributes x_i, i = 1,...,4
- Credential $h = g_1^{x_1}g_2^{x_2}g_3^{x_3}g_4^{x_4}$, Sig_{lssuer}(h)

Example relation of attributes:

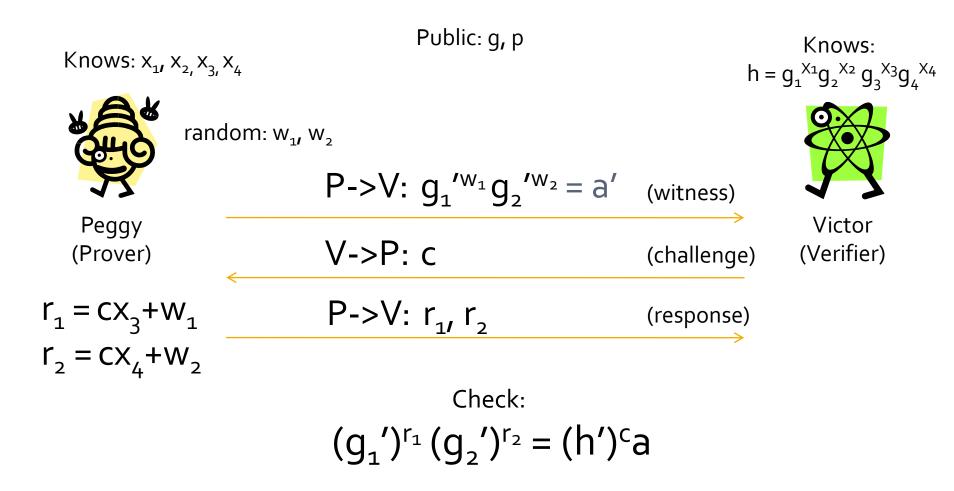
- $(x_1 + 2x_2 10x_3 = 13) \text{ AND } (x_2 4x_3 = 5)$
- Implies: $(x_1 = 2x_3 + 3)$ AND $(x_2 = 4x_3 + 5)$
- Substitute into h
 - $h = g_1^{2x_3+3} g_2^{4x_3+5} g_3^{x_3} g_4^{x_4} = (g_1^3 g_2^5)(g_1^2 g_2^4 g_3^2)^{x_3} g_4^{x_4}$
 - Implies: h / $(g_1^3 g_2^5) = (g_1^2 g_2^4 g_3^2)^{x_3} g_4^{x_4}$

Linear relations of attributes (2)

Example (continued)

- $(x_1 + 2x_2 10x_3 = 13) \text{ AND } (x_2 4x_3 = 5)$
- Implies: h / $(g_1^3 g_2^5) = (g_1^2 g_2^4 g_3^2)^{x_3} g_4^{x_4}$
- How do we prove that in ZK?
 - DL representation proof!
 - $h' = h / (g_1^3 g_2^5)$
 - $g_1' = g_1^2 g_2^4 g_3$ $g_2' = g_4$
 - Prove that you know x_3 and x_4 such that h' = $(g_1')^{x_3} (g_2')^{x_4}$

DL rep. – credential show example



Check $(g_1')^{r_1} (g_2')^{r_2} = (h')^c a$

Reminder

• $h = g_1^{X_1}g_2^{X_2}g_3^{X_3}g_4^{X_4}$ • $h' = h / (g_1^3g_2^5) g_1' = g_1^2g_2^4g_3 g_2' = g_4$ • $a = g_1'^{W_1}g_2'^{W_2} r_1 = cx_3 + W_1 r_2 = cx_4 + W_1$ • Check:

•
$$(g_1')^{r_1} (g_2')^{r_2} = (h')^c a =>$$

 $(g_1')^{(e_{X_3}+W_1)} (g_2')^{(e_{X_4}+W_1)} = (h / (g_1^3g_2^5))^e g_1'^{W_1}g_2'^{W_2} =>$
 $(g_1^{2X_3+3}g_2^{4X_3+5}g_3^{X_3}g_4^{X_4}) = h$
 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow χ_1 χ_2

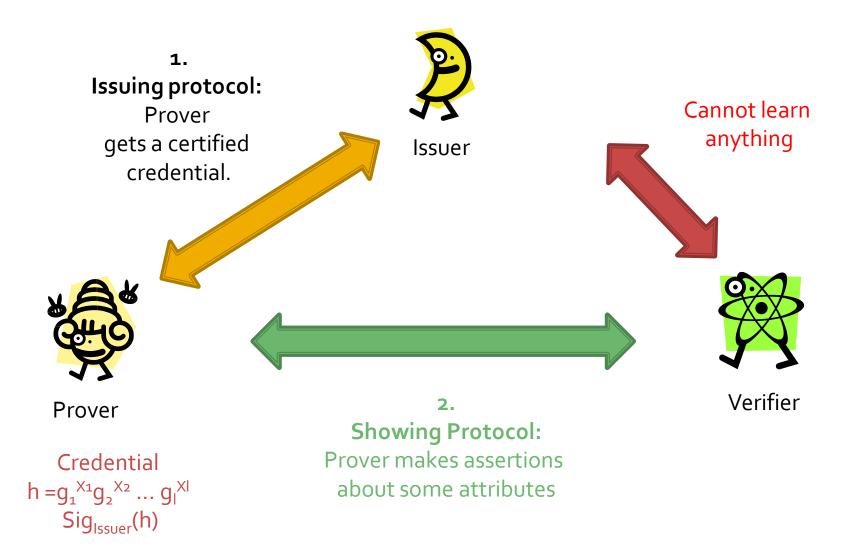
A few notes

- Showing any relation implies knowing all attributes.
- Can make non-interactive (message m)
 - c = H[h, m, a']
- Other proofs:
 - (OR) connector (simple concept)
 - (x_{age}=18 AND x_{city}=H[Cambridge]) OR (x_{age}=15)
 - (NOT) connector
 - Inequality (x_{age} > 18) (Yao's millionaire protocol)

Summary of key concepts (1)

- Standard tools
 - Schnorr ZK proof of knowledge of discrete log.
 - DL rep. ZK proof of knowledge of representation.
- Credential showing
 - representation + certificate
 - ZK proof of linear relations on attributes (AND)
 - More reading: (OR), (NOT), Inequality

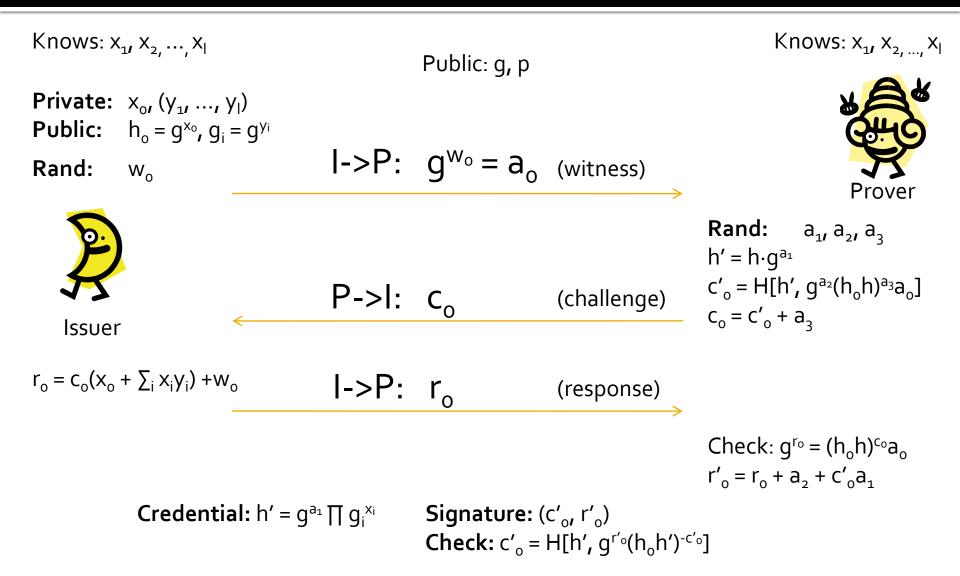
Issuing credentials



Issuing security

- Prover cannot falsify a credential
- Unlinkability
 - Issuer cannot link a showing transcript to an instance of issuing
 - h, Sig_{issuer}(h) have to be unlinkable to issuing
- Achieving unlinkability
 - Issuer's view: $h = g_1^{X_1} g_2^{X_2} \dots g_l^{X_l}$
 - Prover uses: $h' = g_1^{X_1} g_2^{X_2} ... g_l^{X_l} g_0^{a_1}$

Issuing protocol – gory details



Issuing protocol – Issuer side

Knows: x₁, x₂, ..., x_I Public: q, p **Private:** x_o, (y₁, ..., y_l) **Public:** $h_0 = g^{x_0}, g_i = g^{y_i}$ $I \rightarrow P$: $q^{w_0} = a_0$ (witness) Rand: W_o Non interactive signature. c_o – H[h, a_o] P->I: c_o (challenge) Issuer $r_o = c_o(x_o + \sum_i x_i y_i) + w_o$ I->P: r_o (response) ZK knowledge proof of the representation of $h_0 h = g^{x_0} \prod g_i^{x_i} = g^{(x_0 + \sum_i x_i y_i)}$: just Schnorr!

Issuing protocol – Prover side (1)

Public:
$$g, p, h_o = g^{x_o}, g_i = g^{y_i}$$
Knows: $x_{1i}, x_{2,...}, x_i$ $I -> P$: $g^{W_o} = a_o$ (witness) $vinter = h \cdot g^{a_i}$ $P -> I$: C_o (challenge) $r'_o = H[h', g^{a_2}(h_o h)^{a_3}a_o]$ Schnorr
Verification: $P -> I$: C_o (challenge) $h' = h \cdot g^{a_1}$ Issuer
knows the
 $c_o = c'_o + a_3$ $I -> P$: r_o (response)Check: $g^{r_o} = (h_o h)^{c_o} a_o$
 $r'_o = r_o + a_2 + c'_o a_1$ Issuer
knows the
representation
of $(h_o h)!$

Check: $c'_{o} = H[h', g^{r'_{o}}(h_{o}h')^{-c'_{o}}]$

Issuing protocol – Prover side (2)

Public:
$$g, p, h_o = g^{x_o}, g_i = g^{y_i}$$

 $|->P: g^{W_o} = a_o$ (witness)
P->I: c_o (challenge)
 $|->P: r_o$ (challenge)
 $|->P: r_o$ (response)
 $Unlinkable$
 $c_o = c'_o + a_a$
 $c'_o = H[h', g^{a_2}(h_o h)^{a_3}a_o]$
 $c_o = c'_o + a_a$
 $c'_o = r_o + a_a + c'_o a_a$
 $c'_o = H[h', g^{a'o}(h_o h)^{c'o}]$
 $c_o = c'_o + a_a$
 $c'_o = H[h', g^{a'o}(h_o h)^{c'o}]$
 $c_o = c'_o + a_a$
 $c'_o = H[h', g^{a'o}(h_o h)^{c'o}]$
 $d = c'_o + a_a$
 $d = c'_o + a_a$

Issuing protocol – Prover side (3)

Public:
$$g, p, h_o = g^{x_o}, g_i = g^{y_i}$$
Knows: $x_{1r}, x_{2,...}, x_i$ $I -> P$: $g^{W_o} = a_o$ (witness) v_{Prover} $P -> I$: C_o (challenge) $Rand: a_{1r}, a_{2r}, a_3$
 $h' = h \cdot g^{a_1}$
 $C_o = C'_o + a_3$ $I -> P$: r_o (response) $Check: g^{r_o} = (h_o h)^{c_o} a_o$
 $r'_o = r_o + a_2 + C'_o a_1$ $I -> P:$ $r_g^{x_i}$ $Signature: (c'_{or}, r'_o)$
 $Check: $c'_o = H[h', g^{r_o}(h_o h')^{-c'_o}]$$

Check

Goal:

- $C'_{o} = H[h', g^{a_2}(h_{o}h)^{a_3}a_{o}] = H[h', g^{r'_{o}}(h_{o}h')^{-C'_{o}}]$
 - So $g^{a_2}(h_o h)^{a_3}a_o = g^{r'_o}(h_o h')^{-c'_o}$ must be true
- Lets follow:
 - $g^{r'_{o}}(h_{o}h')^{-c'_{o}} = g^{a_{2}}(h_{o}h)^{a_{3}}a_{o} \Leftrightarrow$

- Substitute r'_o and c'_o
- $g^{(r_0 + a_2 + c'_0 a_1)}(h_0 h)^{-(c_0 + a_3)}g^{-c_0 a_1} = g^{a_2}(h_0 h)^{a_3}a_0 \Leftrightarrow$
- $(g^{r_0}(h_0h)^{-c_0})(g^{a_2}(h_0h)^{a_3}) = (g^{a_2}(h_0h)^{a_3})a_0 \Leftrightarrow$

TRUE

Unlinkability

- Issuer sees: c_o, r_o, h Such that $g^{r_o} = (h_o h)^{c_o} a_o$
- Verifier sees: c'_o, r'_o, h'
- Relation:
 - Random: a₁, a₂, a₃
 - h' = h⋅g^a
 - $c_0 = c'_0 + a_3$ • $r'_0 = r_0 + a_2 + c'_0 a_1$
- Even if they collude they cannot link the credential issuing and showing

Notes on issuer

- Authentication between Issuer and Peggy
 - Need to check that Peggy has the attributes requested
- Issuing protocol should not be run in parallel!
 (simple modifications are required)

Full credential protocol

- Putting it all together:
 - Issuer and Peggy run the issuing protocol.
 - Peggy gets:

Credential: $h' = g^{a_1} \prod g_i^{x_i}$

Signature: (c'_{o}, r'_{o}) **Check:** $c'_{o} = H[h', g^{r'_{o}}(h_{o}h')^{-c'_{o}}]$

- Peggy and Victor run the showing protocol
 - Victor checks the validity of the credential first
 - Peggy shows some relation on the attributes
 - (Using DL-rep proof on h')

Key concepts so far (2)

- Credential issuing
 - Proof of knowledge of DL-rep & x_o of issuer
 - Peggy assists & blinds proof to avoid linking
- Further topics
 - Transferability of credential
 - Double spending

Key applications

- Attribute based access control
- Federated identity management
- Electronic cash
 - (double spending)
- Privacy friendly e-identity
 Id-cards & e-passports
- Multi-show credentials!

References

Core:

- Claus P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161—174, 1991.
- Stefan Brands. Rethinking public key infrastructures and digital certificates – building in privacy. MIT Press.
- More:
 - Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms. Technical report TR 260, Institute for Theoretical Computer Science, ETH, Zurich, March 1997.
 - Jan Camenisch and Anna Lysianskaya. A signature scheme with efficient proofs. (CL signatures)

OR proofs

- Peggy wants to prove (A OR B)
 - Say A is true and B is false
- Simple modification of Schnorr
 - Peggy sends witness
 - Victor sends commitment c
 - Peggy uses <u>simulator</u> for producing a response r_B for B
 - (That sets a particular c_B)
 - Peggy chooses c_A such that c = c_A + c_B
 - Then she produces the response r_A for A
- Key concept: simulators are useful, not just proof tools!

Strong(er) showing privacy

- Designated verifier proof
 - A OR knowledge of verifier's key
 - Simulate the second part
 - Third parties do nor know if A is true or the statement has been built by the designated verifier!
- Non-interactive proof not transferable!